PVEng

Design Conditions

Code:	ASME VIII-1	
Year:	2010	
Addenda:	2011	
Operating Press(Min):	25	psi
Operating Press(Max):	125	psi
Operating Temp.:	150	°F
Radiography:	None	
Corrosion Allowance:	None	in

UG-22 Loadings Considered

Internal Press.: Y	/es
External Press.: N	lo
Vessel Weight: N	lo
Weight of Attachments: N	١o
Attachment of Internals: N	٥
Attachment of Externals: N	٥
Cyclic or Dynamic Reactions: Y	/es
Wind Loading: N	lo
Seismic Loading: N	٥
Fluid Impact Shock Reactions: N	No
Temperature Gradients: N	٥
Differential Thermal Expansion: N	٥
Abnormal Pressures: N	٥
Hydrotest Loads: N	٥N

Pressure Vessel Engineering Ltd.

ASME Calculations - CRN Assistance - Vessel Design - Finite Element Analysis

Finite Element Analysis Report - VIII-1

Cust: Pressure Vessel Engineering File: PVEfea-6160-1.0 Desc: Cycle Life Sample Dwg: PVEdwg-6160-1.0 Date: June 26, 2012

Author: Matt Hiskett, Cameron Moore Reviewer: Laurence Brundrett, P. Eng.

Conclusion: From the fatigue assessment, it is determined that the vessel is permissible for 40,573 cycles. This is constrained by the stresses at the weld toe between the 8" nozzle to shell junction.

www.pveng.com info@pveng.com Phone 519-880-9808 Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6

Table of Contents

Description	Page
Cover	1
Table of Contents	2
Executive Summary	3
Stress Limits	4
Model	5
Mesh	6
Error	7
Restraints	8
Loads	9
Exit Pressure Force	10
Reaction Forces	11
Displacement	12
Stress	13
Section - Head Knuckle	14
Stress	15
Stress Linearization 1	16
Cycle Life 1	17
Stress Linearization 2	18
Cycle Life 2	19
Section - 6" Nozzle	20
Stress	21
Stress Linearization 3	22

Description	Page
Cycle Life 3	23
Stress Linearization 4	24
Cycle Life 4	25
Cycle Life 5	26
Cycle Life 5	27
Section - 4" Nozzle	28
Stress	29
Stress Linearization 6	30
Cycle Life 6	31
Stress Linearization 7	32
Cycle Life 7	33
Cycle Life 8	34
Cycle Life 8	35
Section - 8" Nozzle	36
Stress	37
Cycle Life 9	38
Cycle Life 9	39
Cycle Life 10	40
Cycle Life 10	41
Cycle Life 11	42
Cycle Life 11	43

		Autho	Reviewer		
	Model / Drawing Review:	CBM	MAH		
В	oundary / Load Condition Review:	CBM	MAH		
	Results / Review:	CBM	LB		
			Povision(s)		
		_			

	Revision(s)		
Rev	Description	Date	By
0	Release	26-Jun-12	CBM

Executive Summary ver 5.01

Goal:

A fatigue assessment is completed per ASME VIII-2 part 5 for the vessel. Finite element analysis is used to determine the stress amplitudes for fatigue computations.

Summary Conclusions:

Analysis Software

SolidWorks Simulation 2012 SP3.0

Analysis Type

A static linear elastic study is performed using small displacement theory.

Materials

Material properties used in this report are obtained from ASME IID Table 1A (materials for VIII-1 designs). Stress classification limits are set in accordance with ASME VIII-2. Material stress limits are provided in this report, but model stresses are not commented on as this report only covers fatigue assessment.

Model Information

A sectioned (approx. 1/4) solid model is used for the analysis; pipe tolerance and head thin out are removed. The model is sectioned to include all important items requiring fatigue analysis. This report will generate result that justify the fatigue of the entire tank. A solid, 2nd order, tetrahedral mesh is applied and contact elements are treated as bonded. Reported error is < 5% in general regions as per ABSA FEA guideline AB-520. This validates the mesh selected, the model may be used for analysis.

Restraints & Loads

The bottom sectioned surface has symmetry restraints applied. Symmetry is also applied on the two cutting faces on the symmetry planes. All internal surfaces have 100 psi applied. This pressure simulates the same stress amplitude as running 25 psi to 125 psi and calculating the stress differential per VIII-2. All openings have pressure thrust loads applied to simulate the attachment of a closed loop pipe system. Thermal loads have not been applied since all materials have a consistent thermal expansion. The reported reaction forces match the theoretical reactions forces. The model is in balance and restrained from rigid body motion.

Results

The direction of displacement is as expected, the magnitude of displacement is acceptable. The resulting fatigue per location is summarized below.

Location	Allowed Cycles	Reference
Head Knuckle	233,206	Pg. 13
6" Nozzle	215,553	Pg. 19
4" Nozzle	43,727	Pg. 27
8" Nozzle	40,573	Pg. 35

Analysis Conclusion:

From the fatigue assessment it is determined that the vessel is permissible for 40,573 cycles. This is constrained by the stresses at the weld toe at the 8" nozzle to shell junction.

Material Stress Limits ver 4.02 ASME VIII-2 Fig 5.1

Material Input Chart:

150 Temperature [°F]

	Material 1	Material 2	Material 3	Material 4	
Material =	SA-516 70	SA-106 B	SA-105		
Application =	Shell / Head	Nozzles	Flanges		
Sm [psi] =	20,000	17,100	20,000		
Sy [psi] =	35,700	32,900	33,800		
Sya [psi] =	38,000	35,000	36,000		
Sta [psi] =	70,000	60,000	70,000		
E1 =	1.0	1.0	1.0		
E2 =	1.0	1.0	1.0		
E [psi] =	29,030,000	29,030,000	29,030,000		
v =	0.30	0.30	0.30		
Coef =					
Pm [psi] =	20,000	17,100	20,000		
PI [psi] =	30,000	25,650	30,000		
PI+Pb [psi] =	30,000	25,650	30,000		
PI+Pb+Q [psi] =	71,400	65,800	67,600		
Prop. Sources	ASME Section II Part D 2010 Ed, 2011 Add.				
Comments					

Variable Descriptions: VIII-2 5.13

Sm (basic allowable) Sta (tensile strength at ambient temp.) E1 (weld efficiency) E2 (casting efficiency)

Sya (yield strength at ambient temp.) E (modulus of elasticity) - IID Table TM-1 v (Poison's ratio) - IID Table PRD Coef (coefficient of thermal expansion)

Stress Limit Equations: VIII-2 Figure 5.1

- **Pm = E1*E2*Sm** general primary membrane stress intensity limit (material only)
- Pm = 2*Sm general primary membrane stress intensity limit (bolting combine operation +seating)
- PI = 1.5*E1*E2*Sm local membrane stress intensity limit
- **PI+Pb** = 1.5*E1*E2*Sm primary membrane + primary bending stress intensity limit (material only)
- PI+Pb = 3*Sm primary membrane + primary bending stress intensity limit (bolting combine operation + seating)
- **PI+Pb+Q** = Max(3*E1*E2*Sm,2*E1*E2*Sy) primary + secondary stress intensity (2*Sy only valid for Sya/Sta <=0.7)
- **PI+Pb+Q+F** = Use fatigue curves peak stress intensity limit

Comments:

(1) Sy material property is not required, more conservative PI+Pb+Q limits might be computed without it.

- (2) The thermal expansion coefficient is only required for studies including thermal stresses
- (3) Refer to VIII-2 5.15 Figure 5.1 and following for the Pm, PI, Q and F stress limits
- (4) Refer to VIII-2 5.14 Table 5.6 for the correct application of the calculated stress limits
- (5) Use IID tables 5A and 5B for Sm for VIII-2 studies
- (6) Use IID tables 1A and 1B for Sm values (S) for VIII-1 studies
- (7) Use B31.1 Table A for Sm values for B31.1 studies
- (8) Use B31.3 Table A for Sm values for B31.3 studies
- (9) 2*Sy PI+Pb+Q not valid went in creep range.

Model Geometry

A 1/4 section of the model is used in the analysis due to symmetry. All items requiring fatigue analysis per VIII-2 5.5.2.4 have been included in the model. Please refer to PVEdwg-6160-1.0 for details.

Model Geometry - Rotated The model view is rotated to show the opposite side of the vessel.

Mesh

Mesh Plot

A 0.250", second order, tetrahedral, solid mesh was applied globally. Local areas were refined to 0.125" to reduce the reported error to less than 5%

Error Plot

No general areas observe error in excess of 5%. The error plot demonstrates that the mesh selected is refined enough for geometry and stress variations. The mesh setup may be used for further analysis.

Error Plot An alternate view showing the error result for the inside of the vessel.

Symmetry restraints are applied to all faces on the symmetry planes.

This restraint compensates for the use of a 1/4 model and provides results identical to that of a full model. This restraint prevents motion in the x and z directions.

Symmetry Restraint - Bottom

A symmetry restraint is applied through the centre of the shell. This restraint prevents translation of the model in the y direction. This set of restraints prevents translation in all three directions while allowing the model to displace realistically.

Internal Pressure

100 psi is applied to all internal surfaces in the model. This is the pressure differential between the 25 psi and 125 psi cyclic pressure range.

Internal Pressure - Rotated View The vessel is rotated to show the 100 psi pressure applied to the internal faces.

FEA Exit Pressure Force ver 4.0

Inputs:

3 No - number of openings

100 P [psi] - pressure

		Open			
Opening Description	ID [in]	Factor	P [in]	A [in^2]	F [lb]
8" 150#	8.062	0.250	100.000	51.041	1276.032
6" 150#	6.135	0.250	100.000	29.561	739.025
4" 150#	4.085	0.500	100.000	13.108	655.386

Open Factor- use this for circular openings cut by section plane (ex. 1/2 opening)

Apply force F to the model in a realistic location (ex. back of flange, end of pipe or engaged thread area)

Exit Pressure Force

Exit pressure forces are applied to the three nozzles. These loads are applied to all openings without blind covers to simulate the exit pressure force that is generated in a closed loop system. This force is the product of the pressure and the opening's cross sectional area at the inside diameter.

Displacement

Displacement Plot

The displacement plot with the original geometry superimposed. Results are magnified 100 times to exaggerate the displaced shape. The maximum displacement in the model is 0.037".

Displacement Plot - Normal to XY Plane

The displacement plot is oriented normal to the XY plane. The vessel expands radially and elongate axially. The displaced shape of the model is as expected and the magnitude is acceptable.

von Mises Stress Plot The von Mises stress profile based on the alternating pressure is displayed.

von Mises Stress Plot - Rotated

The vessel is rotated to show the stress profile on the inside of the vessel. The maximum stress in the model is 33,381 psi and occurs at the knuckle region of the flanged and dished head.

Section - Head Knuckle ver 5.0

Summary:

This section covers the 6" nozzle at the centre of the flanged and dished head. The permissible number of cycles is calculated for each of the areas below.

Results:

							Permissible
Location #	Location	Method	Stress	Kf	Kek	Se	Number of Cycles
1	Head Knuckle	Linearization	30,877	1.0	1.0	15,954	233,206
2	Head to Shell	Linearization	9,526	2.5	1.0	12,305	1,355,977
Maximum permissible number of cycles					233,206		

Kf = 2.5 for full pen welds with visual inspection only and no volumetric examination. (See table VIII-2 5.11 & 5.12)

Stress Plot - Knuckle and Head to Shell Region

The knuckle and head to shell show stresses that require linearization to determine peak effect for cycle calculation.

Stress Plot - Knuckle and Head to Shell Region A close up of the above image showing the stress classification locations for cycle calculation.

Stress Classification Line - Location 1

A stress classification line is taken through the knuckle region of the flanged and dished head. The stress linearization results are applied to a fatigue curve on the following page.

Distance i to j

Stress Check:

5 nodes found on the stress classification line 0.2782 units long - cubic spline interpolated to 71 equally spaced nodes.

Cycle life location 1

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile Stre UTS<= 80ksi	ength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
30,877ΔSpk [psi] - Range of pr1.00Kf - fatigue strength re3.00m - material constant u0.20n - material constant u17,100S [psi] - material allowab32,900Sy [psi] - material yield s150Tav [°F] - average cycle	rimary plus secondary plus peak equivalent stress (PI+Pb eduction factor (Table 5.11 & 5.12) used for the fatigue knock down factor (Table 5.13) sed for the fatigue knock down factor (Table 5.13) ble strength temperature	+Q+F)
29,030,000 Et [psi] - modulus of elas	sticity at Tav	
Fatigue Penalty Factor: 5.31, 5.32, 5.33 Sps [psi] = max(3*S,2*Sy) Kek1 = 1 Kek2 = 1 + (1-n)/(n*(m-1)) * (Δ	MAX(3*17100,2*32900) = 1 = Spk/Sps-1)	65,800 1
Kek3 = 1/n Kek = If(ΔSpk <sps,kek1,if(δs< th=""><th>1 + (1-0.2)/(0.2*(3-1)) * (30877/65800-1) = 1/0.2 = Spk>=m*Sps,Kek3,Kek2)) IF(30877<65800,1,IF(30877>=3*65800,5,12)) =</th><th>-0.062 5 1</th></sps,kek1,if(δs<>	1 + (1-0.2)/(0.2*(3-1)) * (30877/65800-1) = 1/0.2 = Spk>=m*Sps,Kek3,Kek2)) IF(30877<65800,1,IF(30877>=3*65800,5,12)) =	-0.062 5 1
Permissible Cycle Life: VIII-2, 5.5.3.2 Saltk – (Kf*Kek*ASpk)/2	(1*1*30877)/2 -	15 438
$\mathbf{Ffc}_{\text{feel}} = \text{From Table3 E 1}$	(1 + 30077)/2 = L	30 000 000
Se $[psi]$ = From Tables.F.1 Cycles = From Table3.F.1	3-F.3 15438*MAX(3000000/29030000,1) =	15,954 233,206

Cycles = From Table3.F.1

Stress vs. Cycles

Stress Classification Line - Location 2

A stress classification line is taken through the junction between the shell and the flanged and dished head. The stress linearization results are applied to a fatigue curve on the following page.

Distance i to j

Stress Check:

5 nodes found on the stress classification line 0.25 units long - cubic spline interpolated to 71 equally spaced nodes.

Cycle life location 2 Description

Cycle Graph: Table3.F.1 Graph Carbon, Low Alloy, Series 4xx, and High Tensile Strength Steels for tempera UTS<= 80ksi	atures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
9,526 ΔSpk [psi] - Range of primary plus second. 2.50 Kf - fatigue strength reduction factor (Tab. 3.00 m - material constant used for the fatigue 0.20 n - material constant used for the fatigue	ary plus peak equivalent stress (PI+Pb ble 5.11 & 5.12) knock down factor (Table 5.13) knock down factor (Table 5.13)	+Q+F)
17,100 S [psi] - material allowable		
32,900 Sy [psi] - material yield strength		
150 I av [°F] - average cycle temperature		
Example Example Interduction of ordering of the field of the	MAX(3*17100,2*32900) = 1 =	65,800 1
$\mathbf{Kek3} = 1/n$	1-0.2)/(0.2*(3-1)) * (9526/65800-1) = 1/0.2 =	-0.710 5
Kek = If(ΔSpk <sps,kek1,if(δspk>=m*Sps,Kek3 IF(9526<</sps,kek1,if(δspk>	,Kek2)) <65800,1,IF(9526>=3*65800,5,12)) =	1
Permissible Cycle Life: VIII-2, 5.5.3.2		
Saltk = (Kf*Kek*ΔSpk)/2	(2.5*1*9526)/2 =	11,907
Efc [psi] = From Table3.F.1		30,000,000
$Se_{[psi]} = Saltk^*Max(Efc/Et,1) 3-F.3 \qquad 1$	1907*MAX(3000000/29030000,1) =	12,305
Cycles = From Table3.F.1		1,355,977

Permissible Number of Cycles

Section - 6" Nozzle ver 5.0

Summary:

This section covers the 6" nozzle at the centre of the flanged and dished head. The permissible number of cycles is calculated for each of the areas below.

Results:

							Permissible
Location #	Location	Method	Stress	Kf	Kek	Se	Number of Cycles
3	Nozzle Weld Toe	Linearization	7,651	2.5	1.0	9,883	103,425,376
4	Head Weld Toe	Linearization	12,565	2.5	1.0	16,232	215,553
5	Nozzle ID	Linearization	13,964	1.0	1.0	7,215	56,175,593,403
			Maximum perm	issibl	e nun	nber of cycles	215,553

Kf = 2.5 for full pen welds with visual inspection only and no volumetric examination. (See table VIII-2 5.11 & 5.12)

Stress Plot - 6" Nozzle

The von Mises stress profile where the 6" nozzle meets the flanged and dished head. Stress classification lines are taken at the weld both through the junction with the nozzle and the flanged and dished head.

Stress Plot - 6" Nozzle Inside Corner

The von Mises stress profile at the inside corner of the nozzle. A peak stress occurs at this section due to the discontinuity. The peak stress at this location is used to compute the cycle life.

Stress Linearization ver 2.38

Stress Classification Line - Location 3

A stress classification line is taken through the 6" nozzle at the weld. The stress linearization results are applied to a fatigue curve on the following page.

Stress Check:

5 nodes found on the stress classification line 0.245 units long - cubic spline interpolated to 71 equally spaced nodes.

Cycle life location 3

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile UTS<= 80ksi	Strength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
7,651 ΔSpk [psi] - Range α	of primary plus secondary plus peak equivalent stress (PI+Pb-	+Q+F)
2.50 Kf - fatigue strengt	h reduction factor (Table 5.11 & 5.12)	
3.00 m - material consta	ant used for the fatigue knock down factor (Table 5.13)	
0.20 n - material consta	nt used for the fatigue knock down factor (Table 5.13)	
17,100 S [psi] - material allo	wable	
32,900 Sy [psi] - material yie	eld strength	
150 Tav [°F] - average c	ycle temperature	
29,030,000 Et [psi] - modulus of	elasticity at Tav	
Fatigue Penalty Factor: 5.31, 5.32, 5.33		
Sps [psi] = max(3*S,2*Sy)	MAX(3*17100,2*32900) =	65,800
Kek1 = 1	1 =	1
Kek2 = 1 + (1-n)/(n*(m-1))	*(ΔSpk/Sps-1)	
	1 + (1-0.2)/(0.2*(3-1)) * (7651/65800-1) =	-0.767
Kek3 = 1/n	1/0.2 =	5
Kek = If(ΔSpk <sps,kek1,< th=""><th>lf(ΔSpk>=m*Sps,Kek3,Kek2))</th><th></th></sps,kek1,<>	lf(ΔSpk>=m*Sps,Kek3,Kek2))	
	IF(7651<65800,1,IF(7651>=3*65800,5,12)) =	1
Permissible Cycle Life: VIII-2, 5.5.3.2		
Saltk = (Kf*Kek*ΔSpk)/2	(2.5*1*7651)/2 =	9,563
Efc [psi] = From Table3.F.1	, , , , <u>–</u>	30,000,000
Se [psi] = Saltk*Max(Efc/Et,1)	3-F.3 9563*MAX(3000000/29030000,1) =	9,883

Cycles = From Table3.F.1

Stress Classification Line - Location 4

A stress classification line is taken through the head at the 6" nozzle weld. The stress linearization results are applied to a fatigue curve on the following page.

Stress Check: Local Stress Classification SA-516 70 Material Allowed Check Actual 30,000 10,487 Acceptable PI [psi] = Pb [psi] = 5,606 PI+Pb+Q [psi] = 71,400 12,565 Acceptable Peak [psi] = 12,761

5 nodes found on the stress classification line 0.2784 units long - cubic spline interpolated to 71 equally spaced nodes.

215,553

Cycle life location 4

Description

Cycle Graph:			
Table3.F.1 Graph			
Carbon, Low Alloy, Series 4xx, and High Tensile UTS<= 80ksi	Strength S	Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3			
12,565 ΔSpk [psi] - Range 0	of primary	/ plus secondary plus peak equivalent stress (PI+Pb	+Q+F)
2.50 Kf - latigue strengt	n reducti	on factor (Table 5.11 & 5.12)	
3.00 m - material consta	nt used f	or the fatigue knock down factor (Table 5.13)	
	ni useu n wabla	or the fatigue knock down factor (Table 5.15)	
32 900 Sy test - material vie	wable	th	
	volo tomr		
29 030 000 Et [ps] - modulus of	elasticity	at Tay	
	clasticity		
Fatigue Penalty Factor: 5.31, 5.32, 5.33			65 000
$Sps_{[psi]} = max(3^{\circ}S,2^{\circ}Sy)$		$MAX(3^{-17}100,2^{-3}2900) =$	00,800
$Kek^2 = 1 + (1 e^{1/2})/(e^{1/2})$	(A Cold	() = ()	1
nenz = 1 + (1-1)/(11 (11-1))	(дэркл	$2\mu s - 1$	0.040
		$1 + (1-0.2)/(0.2^{\circ}(3-1))^{\circ}(12565/65800-1) =$	-0.618
$\mathbf{KeK3} = 1/n$	f(A Color	1/0.2 =	5
$\mathbf{Kek} = \Pi(\Delta Spk < Sps, Kek1),$	т(дэрк>	=m"Sps,Kek3,Kek2))	
		IF(12565<65800, 1, IF(12565>=3, 65800, 5, 12)) =	1
Permissible Cycle Life: VIII-2, 5.5.3.2		_	
Saltk = (Kf*Kek*∆Spk)/2		(2.5*1*12565)/2 =	15,707
Efc [psi] = From Table3.F.1		-	30,000,000
Se [psi] = Saltk*Max(Efc/Et,1)	3-F.3	15707*MAX(3000000/29030000,1) =	16,232

Cycles = From Table3.F.1

Stress vs. Cycles

Error Plot - 6" Nozzle

The error plot at the inside corner of the 6" nozzle is capped at 5%. This shows that the stress has fully converged at this location and that it is acceptable to take a direct reading from the model.

Direct Stress Reading

The stress on the inside corner of the 6" nozzle is directly read from the model. The maximum stress at this location is 13,964 psi. Since this stress occurs on the base metal and not on a weld, a Kf value of 1.0 will be used in the cycle life calculation.

Cycle life location 5

Description

Cycle Graph:	
Table3.F.1 Graph	
Carbon, Low Alloy, Series 4xx, and High Tensile Strength Steels for temperatures not exceeding 700°F UTS<= 80ksi	
Cyclic Data: VIII-2, 5.5.3	
13,964 ΔSpk [psi] - Range of primary plus secondary plus peak equivalent stress (PI+Pt	o+Q+F)
1.00 Kf - fatigue strength reduction factor (Table 5.11 & 5.12)	
3.00 m - material constant used for the fatigue knock down factor (Table 5.13)	
0.20 n - material constant used for the fatigue knock down factor (Table 5.13)	
17,100 S [psi] - material allowable	
32,900 Sy [psi] - material yield strength	
150 Tav [°F] - average cycle temperature	
29,030,000 Et [psi] - modulus of elasticity at Tav	
Fatigue Penalty Factor: 5.31, 5.32, 5.33	
Sps $[psi] = max(3*S,2*Sy)$ MAX $(3*17100,2*32900) =$	65,800
Kek1 = 1 1 =	1
Kek2 = 1 + (1-n)/(n*(m-1)) * (ΔSpk/Sps-1)	
1 + (1-0.2)/(0.2*(3-1)) * (13964/65800-1) =	-0.576
Kek3 = 1/n 1/0.2 =	5
Kek = If(ΔSpk <sps,kek1,if(δspk>=m*Sps,Kek3,Kek2))</sps,kek1,if(δspk>	
IF(13964<65800,1,IF(13964>=3*65800,5,12)) =	1
Permissible Cycle Life: VIII-2.55.3.2	
Saltk = $(Kf^*Kek^*\Lambda Snk)/2$ (1*1*13964)/2 =	6.982
Efc $[rost] = From Table 3.F.1$	30.000.000
Se [psi] = Saltk*Max(Efc/Et.1) 3-E.3 6982*MAX(3000000/29030000.1) =	7.215
Cycles = From Table3.F.1	56,175,593,403

Stress vs. Cycles

Section - 4" Nozzle ver 5.0

Summary:

This section covers the 4" hillside nozzle in the flanged and dished head. The permissible number of cycles is calculated for each of the areas below.

Results:

							Permissible
Location #	Location	Method	Stress	Kf	Kek	Se	Number of Cycles
6	Nozzle Weld Toe	Linearization	18,600	2.5	1.0	24,027	43,727
7	Head Weld Toe	Linearization	18,406	2.5	1.0	23,776	45,155
8	Nozzle ID	Linearization	13,738	1.0	1.0	7,099	76,639,153,153
			Maximum perm	issibl	e nun	nber of cycles	43,727

Kf = 2.5 for full pen welds with visual inspection only and no volumetric examination. (See table VIII-2 5.11 & 5.12)

Stress Plot - 4" Nozzle

The von Mises stress profile where the 4" nozzle meets the flanged and dished head. Stress classification lines are taken at the weld both through the junction with the nozzle and the flanged and dished head. Since this is not a radial nozzle, the stresses are not evenly distributed and are higher on the right hand side, closest to the knuckle. Stresses in this area will be used for the cycle life calculation.

Stress Plot - 4" Nozzle Inside Corner

The von Mises stress profile at the inside corner of the nozzle. A peak stress occurs at this section due to the discontinuity. The peak stress at this location is used to compute the cycle life.

Stress Classification Line - Location 6

A stress classification line is taken through the 4" nozzle weld. The stress linearization results are applied to a fatigue curve on the following page.

Distance i to j

Stress Check:

5 nodes found on the stress classification line 0.207 units long - cubic spline interpolated to 71 equally spaced nodes.

Cycle life location 6

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile St UTS<= 80ksi	rength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
18,600 ΔSpk [psi] - Range of p	primary plus secondary plus peak equivalent stress (PI+Pb	+Q+F)
2.50 Kf - fatigue strength r	eduction factor (Table 5.11 & 5.12)	
3.00 m - material constant	used for the fatigue knock down factor (Table 5.13)	
0.20 n - material constant	used for the fatigue knock down factor (Table 5.13)	
17,100 S [psi] - material allowa	ble	
32,900 Sy [psi] - material yield	strength	
150 Tav [°F] - average cycl	e temperature	
29,030,000 Et [psi] - modulus of ela	asticity at Tav	
Fatigue Penalty Factor: 5.31, 5.32, 5.33		
Sps [psi] = max(3*S,2*Sy)	MAX(3*17100,2*32900) =	65,800
Kek1 = 1	1 =	1
Kek2 = 1 + (1-n)/(n*(m-1)) * (/	ΔSpk/Sps-1)	
	1 + (1-0.2)/(0.2*(3-1)) * (18600/65800-1) =	-0.435
Kek3 = 1/n	1/0.2 =	5
Kek = If(ΔSpk <sps,kek1,if(δ< td=""><td>\Spk>=m*Sps,Kek3,Kek2))</td><td></td></sps,kek1,if(δ<>	\Spk>=m*Sps,Kek3,Kek2))	
	IF(18600<65800,1,IF(18600>=3*65800,5,12)) =	1
Pormissible Cycle Life: VIII 2 5522		
Saltk = $(Kf*Kek*ASnk)/2$	(2 5*1*18600)/2 -	23 250
Salik = $(Ri Rek \Delta Spk)/2$ Efa $r = From Table 2 E 1$	(2.5 + 18000)/2 =	23,230
EIC $[psi] = FIOIII Table3.F.T$	22250*MAX(2000000/20020000 1) -	30,000,000
	$23230 \text{ MAX}(3000000/29030000, 1) = _$	24,027

Cycles = From Table3.F.1

1.0E+02 -

1.0E+03 -

1.0E+04 -

1,000

1.0E+00

1.0E+01

Stress vs. Cycles

Permissible Number of Cycles

1.0E+06 -

1.0E+08 -

1.0E+07

1.0E+10

1.0E+11

1.0E+09 -

1.0E+05 -

Stress Classification Line - Location 7

A stress classification line is taken through the flanged and dished head at the 4" nozzle weld. The stress linearization results are applied to a fatigue curve on the following page.

Stress Check:

5 nodes found on the stress classification line 0.2782 units long - cubic spline interpolated to 71 equally spaced nodes.

45,155

Cycle life location 7

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile Strength Stee UTS<= 80ksi	Is for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
18,406 ΔSpk [psi] - Range of primary pl	us secondary plus peak equivalent stress (PI+Pb	+Q+F)
2.50 Kf - fatigue strength reduction f	actor (Table 5.11 & 5.12)	
3.00 m - material constant used for	the fatigue knock down factor (Table 5.13)	
0.20 n - material constant used for t	he fatigue knock down factor (Table 5.13)	
17,100 S [psi] - material allowable		
32,900 Sy [psi] - material yield strength		
150 Tav [°F] - average cycle tempera	ature	
29,030,000 Et [psi] - modulus of elasticity at	Tav	
Fatique Penalty Factor: 5.31, 5.32, 5.33		
Sps [psi] = $max(3*S.2*Sv)$	MAX(3*17100.2*32900) =	65.800
Kek1 = 1	1 =	1
Kek2 = 1 + (1-n)/(n*(m-1)) * (ΔSpk/Sps	5-1)	
	1 + (1-0.2)/(0.2*(3-1)) * (18406/65800-1) =	-0.441
Kek3 = 1/n	1/0.2 =	5
Kek = If(ΔSpk <sps.kek1.if(δspk>=m)</sps.kek1.if(δspk>	*Sps.Kek3.Kek2))	
- (F(18406 < 65800.1.1F(18406 > = 3*65800.5.12)) =	1
Permissikle Quele Lifes Million = 5.00		
Permissible Cycle Life: VIII-2, 5.5.3.2		00.000
Saltk = $(KT^KeK^\Delta SpK)/2$	(2.5~1~18406)/2 = [23,008
		30,000,000
Se [psi] = Saltk*Max(Efc/Et.1) 3-E.3	23008*MAX(30000000/29030000.1) =	23.776

Cycles = From Table3.F.1

Error Plot - 4" Nozzle

The error plot at the inside corner of the 4" nozzle is capped at 5%. This shows that the stress has fully converged at this location and that it is acceptable to take a direct reading from the model.

Direct Stress Reading

The stress on the inside corner of the 4" nozzle is directly read from the model. The maximum stress at this location is 13,738 psi. Since this stress occurs on the base metal and not on a weld, a Kf value of 1.0 will be used in the cycle life calculation.

Cycle life location 8

Description

Cycle Graph: Table3.F.1 Graph Carbon, Low Alloy, Series 4xx, and High	Fensile Strength Steels for temp	peratures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3			
13,738 ΔSpk [psi] - Ra 1.00 Kf - fatigue st 3.00 m - material co 0.20 n - material co 17,100 S [psi] - material co 32,900 Sy [psi] - material co 150 Tav [°F] - avera 29,030,000 Et [psi] - moduli	nge of primary plus secon rength reduction factor (T constant used for the fatige onstant used for the fatige al allowable ial yield strength age cycle temperature us of elasticity at Tav	ndary plus peak equivalent stress (Pl able 5.11 & 5.12) ue knock down factor (Table 5.13) ue knock down factor (Table 5.13)	+Pb+Q+F)
Fatigue Penalty Factor: 5.31, 5.32	2, 5.33		05.000
Sps [psi] = $max(3^{\circ}S, 2^{\circ}S)$ Kek1 = 1)	MAX(3*17100,2*32900) = 65,800 = 1
Kek2 = 1 + (1-n)/(n*(m	ι-1)) * (ΔSpk/Sps-1)		-
Kek3 = 1/n Kek = If(ΔSpk <sps,k< th=""><th>1 + <ck1,lf(δspk>=m*Sps,Ke IF(13738</ck1,lf(δspk></th><th>(1-0.2)/(0.2*(3-1)) * (13738/65800-1 1/0.2 k3,Kek2)) 3<65800,1,IF(13738>=3*65800,5,12)</th><th>) = -0.582 2 = 5) = 1</th></sps,k<>	1 + <ck1,lf(δspk>=m*Sps,Ke IF(13738</ck1,lf(δspk>	(1-0.2)/(0.2*(3-1)) * (13738/65800-1 1/0.2 k3,Kek2)) 3<65800,1,IF(13738>=3*65800,5,12)) = -0.582 2 = 5) = 1
Permissible Cycle Life: VIII-2, 5.5	.3.2		
Saltk = (Kf*Kek*∆Spk)/2	(1*1*13738)/2	2 = 6,869
Etc _[psi] = From Table3.F Se _[psi] = Saltk*Max(Efc Cycles = From Table3.F	∵1 /Et,1) 3-F.3 ⁷ .1	6869*MAX(3000000/29030000,1	30,000,000) = 7,099 76,639,153,153

Section - 8" Nozzle ver 5.0

Summary:

This section covers the 8" nozzle in the shell. The permissible number of cycles is calculated for each of the areas below.

Results:

							Permissible
Location #	Location	Method	Stress	Kf	Kek	Se	Number of Cycles
9	Shell Weld Toe	Extrapolation	19,059	2.5	1.0	24,620	40,573
10	Nozzle Weld Toe	Direct Reading	11,075	2.5	1.0	14,306	383,645
11	Nozzle ID	Direct Reading	20,398	1.0	1.0	10,540	28,356,319
Maximum permissible number of cycles					40,573		

Kf = 2.5 for full pen welds with visual inspection only and no volumetric examination. (See table VIII-2 5.11 & 5.12)

Stress Plot - 8" Nozzle

The von Mises stress profile where the 8" nozzle meets the shell. Stress classification lines are taken at the weld both through the junction with the nozzle and the shell.

Stress Plot - 8" Nozzle Inside Corner

The von Mises stress profile at the inside corner of the nozzle. A peak stress occurs at this section due to the discontinuity. The peak stress at this location is used to compute the cycle life.

Error Plot - 8" Nozzle Weld

The error plot at the 8" nozzle fillet weld attaching to the shell is capped at 5%. This shows that the stress has not fully converged at this location and therefore the stress data will be read along the surface leading up to the weld and then extrapolated.

Extrapolated Stress

The stress at the weld toe attaching to the shell is extrapolated. The extrapolated stress at this location is 19,059 psi. Since this stress occurs on a fillet weld, a Kf value of 2.5 will be used in the cycle life calculation. A third order polynomial curve fit is used to extrapolate the data.

Cycle life location 9

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile Stre UTS<= 80ksi	ength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
19,059 ΔSpk [psi] - Range of pr 2.50 Kf - fatigue strength reg 3.00 m - material constant u 0.20 n - material constant u	imary plus secondary plus peak equivalent stress (PI+Pb duction factor (Table 5.11 & 5.12) used for the fatigue knock down factor (Table 5.13) sed for the fatigue knock down factor (Table 5.13)	+Q+F)
17,100 S [psi] - material allowab		
32,900 Sy [psi] - material yield s	terength	
150 Tav [°F] - average cycle	temperature	
Fatigue Penalty Factor: 5.31, 5.32, 5.33 Sps [psi] = max(3*S,2*Sy) Kek1 = 1 Kek2 = 1 + (1-n)/(n*(m-1)) * (Δ	MAX(3*17100,2*32900) = 1 = Spk/Sps-1)	65,800 1
Kek3 = 1/n Kek = If(ΔSpk <sps,kek1,if(δs< th=""><th>1 + (1-0.2)/(0.2*(3-1)) * (19059/65800-1) = 1/0.2 = Spk>=m*Sps,Kek3,Kek2)) IF(19059<65800,1,IF(19059>=3*65800,5,12)) =</th><th>-0.421 5 1</th></sps,kek1,if(δs<>	1 + (1-0.2)/(0.2*(3-1)) * (19059/65800-1) = 1/0.2 = Spk>=m*Sps,Kek3,Kek2)) IF(19059<65800,1,IF(19059>=3*65800,5,12)) =	-0.421 5 1
Permissible Cycle Life: VIII-2, 5.5.3.2 Saltk = (Kf*Kek*∆Spk)/2	(2.5*1*19059)/2 =	23,824
Efc [psi] = From Table3.F.1	, , , , , , , , , , , , , , , , , , ,	30,000,000
Se [psi] = Saltk*Max(Efc/Et,1) Cycles = From Table3.F.1	3-F.3 23824*MAX(3000000/29030000,1) =	24,620 40,573

Cycles = From Table3.F.1

Stress vs. Cycles

Error Plot - 8" Nozzle Weld

The error plot at the fillet weld attaching to the 8" nozzle is capped at 5%. This shows that the stress has fully converged at this location and that it is acceptable to take a direct reading from the model.

Direct Stress Reading

The stress on the weld fillet attaching to the 8" nozzle is directly read from the model. The maximum stress at this location is 11,075 psi. Since this stress occurs on a fillet weld, a Kf value of 2.5 will be used in the cycle life calculation.

383,645

Cycle life location 10

Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile S UTS<= 80ksi	Strength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
<u> 11,075</u> ΔSpk [psi] - Range of 2.50 Kf - fatigue strength	primary plus secondary plus peak equivalent stress (PI+Pb- reduction factor (Table 5.11 & 5.12)	+Q+F)
3.00 m - material constar	t used for the fatigue knock down factor (Table 5.13)	
0.20 n - material constan	t used for the fatigue knock down factor (Table 5.13)	
17,100 S [psi] - material allow	rable	
32,900 Sy [psi] - material yiel	d strength	
150 Tav [°F] - average cyc	cle temperature	
29,030,000 Et [psi] - modulus of e	lasticity at Tav	
Fatigue Penalty Factor: 5.31, 5.32, 5.33 Sps [psil = max(3*S 2*Sy)	MAX(3*17100 2*32900) =	65,800
Kek1 = 1	1 =	1
Kek2 = 1 + (1-n)/(n*(m-1)) *	(ΔSpk/Sps-1)	•
	1 + (1-0.2)/(0.2*(3-1)) * (11075/65800-1) =	-0.663
Kek3 = 1/n	1/0.2 =	5
Kek = If(ΔSpk <sps,kek1,if< th=""><td>ΔSpk>=m*Sps,Kek3,Kek2))</td><td></td></sps,kek1,if<>	ΔSpk>=m*Sps,Kek3,Kek2))	
	IF(11075<65800,1,IF(11075>=3*65800,5,12)) =	1
Permissible Cvcle Life: VIII-2, 5,5,3,2		
Saltk = $(Kf^*Kek^*\Delta Spk)/2$	(2.5*1*11075)/2 =	13.844
Efc [psi] = From Table3.F.1		30.000.000
Se $[psi] = Saltk*Max(Efc/Et.1)$	3-F.3 13844*MAX(3000000/29030000.1) =	14.306

Cycles = From Table3.F.1

Error Plot - 8" Nozzle

The error plot at the inside corner of the 8" nozzle is capped at 5%. This shows that the stress has fully converged at this location and that it is acceptable to take a direct reading from the model.

Direct Stress Reading

The stress on the inside corner of the 8" nozzle is directly read from the model. The maximum stress at this location is 20,398 psi. Since this stress occurs on the base metal and not on a weld, a Kf value of 1.0 will be used in the cycle life calculation.

Page 43 of 43

Cycle life location 11 Description

Cycle Graph:		
Table3.F.1 Graph		
Carbon, Low Alloy, Series 4xx, and High Tensile S UTS<= 80ksi	Strength Steels for temperatures not exceeding 700°F	
Cyclic Data: VIII-2, 5.5.3		
20,398 ΔSpk [psi] - Range of 1.00 Kf - fatigue strength 3.00 m - material constar 0.20 n - material constan 17,100 S [psi] - material allow 32,900 Sy [psi] - material yiel	primary plus secondary plus peak equivalent stress (PI+Pb reduction factor (Table 5.11 & 5.12) at used for the fatigue knock down factor (Table 5.13) t used for the fatigue knock down factor (Table 5.13) vable d strength	+Q+F)
29.030.000 Et Insil - modulus of e	lasticity at Tay	
Fatigue Penalty Factor: 5.31, 5.32, 5.33 Sps [psi] = max(3*S,2*Sy)	MAX(3*17100,2*32900) =	65,800
Kek1 = 1 Kek2 = 1 + (1-n)/(n*(m-1)) * 1	1 = (ΔSpk/Sps-1)	1
Kek3 = 1/n Kek = If(ΔSpk <sps,kek1,if< th=""><th>1 + (1-0.2)/(0.2*(3-1)) * (20398/65800-1) = 1/0.2 = (ΔSpk>=m*Sps,Kek3,Kek2)) IF(20398<65800,1,IF(20398>=3*65800,5,12)) =</th><th>-0.380 5 1</th></sps,kek1,if<>	1 + (1-0.2)/(0.2*(3-1)) * (20398/65800-1) = 1/0.2 = (ΔSpk>=m*Sps,Kek3,Kek2)) IF(20398<65800,1,IF(20398>=3*65800,5,12)) =	-0.380 5 1
Permissible Cycle Life: VIII-2, 5.5.3.2 Saltk = (Kf*Kek*ΔSpk)/2 Efc [psi] = From Table3.F.1	(1*1*20398)/2 = [10,199 30,000,000
Se [psi] = Saltk*Max(Efc/Et.1)	3-F.3 10199*MAX(3000000/29030000.1) =	10.540

Cycles = From Table3.F.1

28,356,319

